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Developing implicit pressure-weighted upwinding scheme to
calculate steady and unsteady flows on unstructured grids
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SUMMARY

The finite-volume methods normally utilize either simple or complicated mathematical expressions to
interpolate the fluxes at the cell faces of their unstructured volumes. Alternatively, we benefit from the
advantages of both finite-volume and finite-element methods and estimate the advection terms on the cell
faces using an inclusive pressure-weighted upwinding scheme extended on unstructured grids. The present
pressure-based method treats the steady and unsteady flows on a collocated grid arrangement. However,
to avoid a non-physical spurious pressure field pattern, two mass flux per volume expressions are derived
at the cell interfaces. The dual advantages of using an unstructured-based discretization and a pressure-
weighted upwinding scheme result in obtaining high accurate solutions with noticeable progress in the
performance of the primitive method extended on the structured grids. The accuracy and performance of
the extended formulations are demonstrated by solving different standard and benchmark problems. The
results show that there are excellent agreements with both benchmark and analytical solutions as well as
experimental data. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The past two decades has shown that there has been an increasing interest in the unstructured-grid
employment in finite-volume methods because it not only retains the conservation properties of the
finite-volume method but also eases grid generation in complex computational domains. As it is
known, local mesh refinement, either adaptive or fixed, is a major demand in the computational fluid
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116 M. DARBANDI AND S. VAKILIPOUR

dynamics. This can be easily achieved via unstructured grid employment [1]. Generally speaking,
the numerous advantages of unstructured grids have promoted the grid generation research to
focus on developing more robust and more efficient unstructured grid generation techniques.
Mavriplis [2] and Morgan and Peraire [3] have presented a complete overview of the basic
unstructured mesh techniques for computational fluid dynamics. Few pioneering works in the
unstructured grid includes that of Lohner et al. [4], Mavriplis [5], and Barth [6]. Following
various grid generation techniques, efforts have been devoted to the development of finite-element
methods capable of implementing on general unstructured grids [7, 8]. This implementation is
rather straightforward. Contrary to the finite-element method, the finite-volume methods face more
severe difficulties to treat them on unstructured grids. One fundamental problem with solving
the incompressible equations is the velocity–pressure formulation and equal-order interpolation,
presumably because of the stability difficulties associated with central difference type schemes
for this class of problems. This difficulty is extensively described in this work. Another difficulty
is the use of multigrid cycles on the unstructured grids [5, 9–11]. As an example, Wang and
Joshi [12] employed an algebraic multigrid procedure in their cell-centred finite-volume method to
solve incompressible flow. The other problem is the extension of higher-order upwind scheme on
unstructured grids. Barth and Jepersen [13], Zhao and Zhang [14], and Woodfield et al. [15] are
just few references among many, who presented high-order upwind scheme to treat the convection
terms at the cell faces with or without introducing limiters and to suppress spurious oscillations
around the discontinuities.

From the finite-volume perspective, the approximation of fluxes at the cell faces can be drastically
improved by incorporating the correct physics of flow in the cell-face expressions. For example,
a basic upwind estimation for the convection terms produces false diffusion [16]. However, the
false diffusion can be decreased dramatically if upwinding is skewed in the flow direction [17].
Unfortunately, the upwinding is not the sole physics behind approximating the cell-face velocity. A
more inclusive suggestion is to incorporate the weight of other key parameters in the approximation.
Schneider and Raw [18] presented a mass-weighted, skewed, positive influence coefficient upwind
scheme on quadrilateral mesh. Schneider and Raw [19] and Darbandi and Schneider [20] showed
that the approximation could be effectively improved if the pressure was also included in the
advection term approximations. In the next paragraphs, we briefly mention how different schemes
treat the fluxes at the cell faces.

As was mentioned before, one major problem with treating the incompressible governing equa-
tions is the decoupling of velocity and pressure fields. The solution of the incompressible flow
equations faces a particular difficulty due to the fact that the continuity equation does not directly
involve the pressure term. The artificial compressibility method of Chorin [21], (e.g. [9, 14, 22])
or the limit of the compressible flow equations through preconditioning (e.g. [11, 23]) have gen-
erally employed to provide suitable links among the incompressible governing equations. These
techniques overcome the aforementioned difficulty and suppress oscillatory pattern in the pressure
field. For example, Jorgenson and Pletcher [23] developed a finite-volume pressure-based algo-
rithm to solve the 2D compressible equations on unstructured grids using temporal preconditioning
approach, which enabled them to solve very low Mach number flows. They applied a cell-centred
scheme in their algorithm.

Another approach commonly used to alleviate the non-physical pressure pattern is a staggered
arrangement of the variables, which were initially introduced by Harlow and Welch [24] on the
Cartesian grids. It has led to several variations depending on the location of the variables [25].
The staggered grid arrangement is equivalent to the unequal-order interpolation for pressure and
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velocity, which is commonly used in the finite-element context to achieve stability as expressed
by Ladyzhenskaya–Babuska–Brezzi condition. The staggered grid arrangement has been practiced
in unstructured grid arrangement since many years ago. Rida et al. [26] used the skewed mass-
weighted upwind function proposed by Schneider and Raw [18] to estimate the convection terms at
the cell faces. Kobayashi et al. [27] employed a finite-volume discretization method to solve steady
2D incompressible flow on unstructured grids. They applied a second-order least-squares scheme
for convection discretization and a fractional step projection method based on a staggered grid
arrangement for pressure–velocity coupling. Vidovic et al. [28] developed an upwind-biased finite-
volume method to treat flow on staggered triangular grids using linear reconstruction of staggered
vector fields. They did not use assumption of incompressibility in the spatial discretization to
allow the extension of their scheme to the compressible case. From a hybrid method perspective,
Baliga and Patankar [29] solved the 2D incompressible flow using finite-volume-based finite-
element method. They used a combination of six-node macroelements and three-node triangular
subelements to avoid pressure velocity decoupling.

Besides suppressing the spurious pressure mode, the staggered grid employment may provide
additional benefits in specific applications. For example, considering a proper choice for time
advancing schemes, the staggered-based discretization conserves the global kinetic energy. Perot
[30] and Zhang et al. [31] solved 2D and 3D laminar flows on unstructured grids and discussed
the roles of discrete operators for the curl and divergence in ensuring kinetic energy conservation.
This conservation made their numerical solution robust without the use of numerical dissipation.
Benhamadouche and Laurence [32] and Mahesh et al. [33] developed a non-dissipative formulation
for LES on unstructured staggered grid. They indicated that the role of discrete energy conservation
had been extremely important in achieving a robust and accurate formulation. Contrary to the
above benefits, there are major difficulties in employing the staggered grids to discretize complex
geometries. One major difficulty is the dual bookkeeping requirement for velocity, pressure, and
the other flow field variables. The problem becomes very tedious on curvilinear coordinate system
[34, 35] and very complicated in unstructured grid employments [28, 30, 33]. Additionally, the
classical first-order and second-order upwind schemes produce more false diffusion on general
grid systems [34, 36]. There are references which extensively study the variations of staggered
grid arrangements with their alternative known as collocated one [25, 37].

An alternative to staggered grid employment is the use of a dual-velocity interpolation on
collocated grids. As the pioneers in the collocated scheme, Rhie and Chow [38] invented this
approach and relied on averaging techniques for the coefficients of the momentum equations at
the cell interfaces because the velocities were not available at the cell faces of a non-staggered
grid arrangement. Additionally, the proposition of the equal-order collocated scheme of Prakash
and Patankar [39] permitted the collocation of pressure and velocity at the same nodes. As a
more inclusive scheme, Saabas and Baliga [40] and Masson et al. [41] used the upwind scheme
of Schneider and Raw [18] and developed their own strategy called first-order mass-weighted
upwind scheme to treat the convection terms on unstructured grids. Tran et al. [42] extended
this scheme to a second-order upwind scheme and showed that it would improve the solution
accuracy effectively. Davidson [43] presented a pressure correction procedure for the unstructured
meshes using a cell-centred, collocated finite-volume method. The pressure–velocity coupling was
treated using SIMPLEC. Central differencing was used for the convection terms together with
fourth-order numerical dissipation and central differencing was employed for the diffusion terms.
To avoid pressure–velocity decoupling, the mass flux at cell faces was computed using the Rhie
and Chow interpolation. In the SIMPLE-based algorithms, the velocity field information calculated
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via the momentum equations is used to calculate the pressure field via the continuity equation.
Lai [44] utilized a pressure-based collocated cell-centred storage scheme to solve incompressible
flow on unstructured grids as well. He used an element-centre storage scheme so that all the
dependent variables were located at element centres. He used the pressure implicit with splitting
of operators (PISO) of Issa [45] to couple the velocity and pressure fields. Wang and Joshi
[12] employed a cell-centred collocated finite-volume method to solve incompressible flow on
unstructured grid. Chenier et al. [46] used an original method leading to local redistributions of
the fluid mass, which simultaneously yielded the control of the kinetic energy and the convergence
of their collocated finite-volume scheme for solving incompressible flow on unstructured grids.

Despite the aforementioned progresses of unstructured grid employment in the finite-volume
methods, there is still demand in more robust schemes capable of achieving higher accuracy and
performance in engineering flow analysis. Similarly, we also extend a novel pressure-weighted
upwinding scheme to unstructured collocated grid employments. The current scheme implements
the physics of flow field accurately in modelling the advection terms at the cell interfaces. Addi-
tionally, the influence of pressure field is also included in treating the mass fluxes in the continuity
equation in order to create a suitable coupling between pressure and velocity fields. The important
features of this approach can be counted as the use of a velocity–pressure formulation with equal-
order interpolation and the computation of the flow field via an implicit procedure. The method by
which this can be achieved has already been successfully demonstrated in the case of steady flow
on structured quadrilateral [20, 47], triangular [48], and hybrid [49] grids. In the present work, we
further extend the proposed upwinding strategy to steady and unsteady flows on unstructured grid.

2. THE GOVERNING EQUATIONS

The 2D conservation laws for mass, momentum, and energy without any source terms are given by

��

�t
+ �A(�)

�x
+ �B(�)

�y
= �C(�)

�x
+ �D(�)

�y
(1)

where the solution vector �, convection vectors (A and B), and diffusion vectors (C and D) are
defined as

[� A B C D ] =

⎡
⎢⎢⎢⎢⎢⎣

� �u �v 0 0

�u �uu + p �vu �xx �yx

�v �uv �vv + p �xy �yy

�e �uh �vh u�xx + v�xy − qx u�yx + v�yy − qy

⎤
⎥⎥⎥⎥⎥⎦ (2)

where u, v, �, p, e, and h represent the longitudinal and transversal velocities, density, pressure,
total specific energy, and the total enthalpy, respectively. The Newtonian fluid assumption is used
to present the stress tensor components. The assumption leads to

�xx = 2�
�u
�x

−
{
2

3
�

(
�u
�x

+ �v

�y

)}
(3)
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(4)

where � represents the molecular viscosity coefficient. The terms inside the braces in Equations (3)
and (4) vanish in incompressible limit. Using the Fourier’s law in heat conduction and assuming
negligible potential energy, the heat fluxes and the total enthalpy are calculated from

qx =−k
�T
�x

, qy =−k
�T
�y

(5)

h = cpT + (u2 + v2)/2 (6)

where T , k, cp represent the temperature, thermal conductivity coefficient, and the specific heat
at constant pressure, respectively. The governing equations are numerically treated in the next
sections using the advantages of both finite-volume and finite-element methods.

3. THE UNSTRUCTURED DISCRETIZATION APPROACH

The computational domain is broken into an unstructured assembly of triangular elements. We
achieve this discretization, for domains of arbitrary geometrical complexity, by employing the
grid generator described by Reference [1]. It uses the advancing front method to triangulate
the computational boundaries and to create the triangles within the computational domain. User-
specified grid parameter distribution functions are used to control the shape and size of the generated
elements. The Delaunay criterion enforces that no other point in the computational domain lies
within the circumcircle of a given triangle element. Moreover, a mesh refinement algorithm is
eventually used to improve the quality of the elements by controlling the elements aspect ratio and
the maximum angle in each triangle.

Figure 1 shows a part of our generated unstructured grid in the solution domain. It consists
of several triangular elements. In our finite-element approach, nodes are located at the element
vertices, see the solid circles. The proper assemblage of the discrete cell faces around each individual
node can create a confined region around that node, which can be used later for employing the
conservation laws. The shaded area around node P in Figure 1 illustrates a discrete finite volume.
However, to generate our cell, each element is broken into three sub-control-volumes (SCVs) using
the medians of each triangle. The dashed lines are medians, which represent the cell faces as well.
The three SCVs in each element are called SCV1, SCV2, and SCV3, see element KMS. After
constructing the three SCVs in each element, three cell faces are available in each element. The
fluxes through each of these three faces are approximated at their midpoints, which are named
integration points; see i p1 and i p2 in SPR element. However, normal direction to each cell face
is needed for integration purposes. In this regard, we define normal outward vector to each cell
face. Its magnitude is equal to the cell face area and it is placed at integration point, see �S1 and
�S2 normal vectors in element SPR. Considering SCVi in element PTQ, only the fluxes which
pass through the inner surfaces of SCVi , i.e. S1i and S2i , are needed to be integrated for the
calculation of convection and diffusion fluxes. In another words, we need calculating the fluxes
only at integration points of the interior faces. However, the unknowns at the integration points
cannot be considered as the major unknowns in our formulation because the number of unknowns
exceeds the number of available algebraic equations for the entire cells in the domain. Therefore,
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Figure 1. Grid terminology and upwinding strategy.

the variables at integration points must be presented in terms of nodal unknowns in order to be
able to close the set of linear algebraic equations consistently.

The present method is pressure based and considers the pressure variable as a dependent variable
in its algorithm. Almost all of the primitive pressured-based algorithms have chosen the velocity
components, i.e. U and V , as their major unknowns variables [14, 41–44]. Alternatively, we have
chosen the momentum components, i.e. F = �U and G = �V , as the major unknowns in our
formulation. There are a few reasons behind this decision. Since this study is a general research,
which ultimately intends to develop an all-speed flow formulation and a general incompressible–
compressible algorithm, this choice permits to extend our current algorithm to an all-speed flow
solver [20, 47, 50, 51]. Additionally, it reduces the linearization task remarkably [50, 52]. Moreover,
the momentum variables are constant passing through a discontinuity; hence, there would be less
chance for the momentum components to oscillate around discontinuities [50, 52, 53].

4. THE NUMERICAL MODELLING

Using the advantages of divergence theorem, Equation (1) is integrated over an arbitrary sub-
control-volume, i.e. SCVi . Back to Figure 1 and description provided in Section 3, the convection
and diffusion fluxes are integrated over only the inner faces. This consideration yields

∫
��i

��

�t
d� +

∫
S1i+S2i

(Aî + B ĵ) · ds=
∫
S1i+S2i

(Cî + D ĵ) · ds (7)

where ��i is the volume of SCVi , ds is the normal outward vector to the cell face, and the
parameters S1i and S2i indicate the two inner cell faces in conjunction with SCVi , see element
PQT in Figure 1. In the present approach, the fluxes at the SCV surfaces are assumed to be uniform.
Therefore, the total flux magnitude is calculated on each cell face and is placed at its integration
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point. For example, the calculation of the mass fluxes at integration points and their substitutions
in Equation (7) finally yield

[a p f m]{ f } + [a pgm]{g} = 0 (8)

To make the set of our algebraic equations more stiff, we have assumed that the flow Mach
number would be very low in which the variation of density field would certainly become neg-
ligible. Therefore, to magnify this assumption, the time variation term is totally removed from
Equation (8). More details of deriving Equation (8) are provided in treating the x-momentum
equation. Equation (8) is in matrix form and presents three mass conservations for three SCVs
in each element. Therefore, the matrices are 3× 3. The vectors shown by lowercase letters, i.e.
{ f } and {g}, represent f and g variables at the three integration points located within an element.
We will show that they need to be presented in terms of nodal variables. The superscripts over
the matrix coefficients from left to right are the name of the equation (e.g. p for the continuity
equation), the name of its multiplier (e.g. f if it is multiplied by f ), and the type of term (m for
the mass flux, c for the convection flux, and d for the diffusion flux terms), respectively. The
coefficients of matrices in Equation (8) are obtained from

a p f m
i j =

⎧⎪⎪⎨
⎪⎪⎩

(�Sx )S1i if j = S1i

(�Sx )S2i if j = S2i

0 else

a pgm
i j =

⎧⎪⎪⎨
⎪⎪⎩

(�Sy)S1i if j = S1i

(�Sy)S2i if j = S2i

0 else

(9)

where the index i denotes the SCV number and index j denotes the integration point number. If
ds= �Sx î +�Sy ĵ , �Sx and �Sy are the x and y components of the normal vector to the cell face,
respectively. As was mentioned before, the length of the normal vector is equal to the area of the
cell face.

Similar to the continuity equation, the momentum equations can be treated and approximated
at the cell faces. For example if we start from Equation (7), the x-momentum equation can be
integrated over S1i and S2i faces of SCVi . The integration yields∫

��i

�(�u)

�t
d� +

∫
S1i+S2i

[(�uu + p − �xx )î + (�vu − �yx ) ĵ] · ds= 0 (10)

As is observed, the convection terms are nonlinear with respect to the chosen dependent variables,
i.e. P , F (or f = �u) and G (or g= �v). Therefore, the linearization of the nonlinear convection
terms is mandatory and should be carefully fulfilled at this stage. Darbandi and Mokarizadeh [54]
and Darbandi et al. [55] perform a 1D study and present different linearization strategies to linearize
the convection terms with respect to the momentum variables. Their strategies are important if
the flow is highly compressible. In this work, we are mainly concentrated on incompressible limit
solutions, hence, we use simple linearization scheme in our formulation. Considering a simple
linearization scheme, �uu term is linearized to

�uu ≈ ū(�u) = ū f (11)

In this study, the bar over a variable means that it is approximated using the known magni-
tudes of the previous iteration in our fully implicit iterative procedure. Considering the above
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simple linearization strategy, the integrations over the two cell faces can be suitably replaced with
summations on discrete faces. The result for SCVi is given by

(��i/�t)F +
2∑

k=1
[(ū f + p − �xx )�Sx + (v̄ f − �yx )�Sy]Ski = (��i/�t)F

o (12)

where �t is the time step, the superscript o denotes the old magnitude, and k counts S1i and S2i
cell faces of SCVi . The above transient term treatment shows that the accuracy in time would be
first order in treating unsteady flow problems. The stress terms in Equation (12) can be readily
discretized using the finite-element interpolations. In another words, they are directly connected
to the nodal variables using the finite-element shape functions N . For example, the gradient of an
arbitrary scalar such as � can be approximated by

��

�x
=

3∑
j=1

�N j

�x
� j (13)

where the uppercase letters (such as �) denote the magnitudes at the grid points or element vertices.
In fact, Equation (13) indicates that the gradient of each arbitrary variable such as � at the cell
face can be evaluated by making use of the local nature of the finite-element shape functions.
Considering the definitions of stress tensor terms given in Equations (3)–(4), the diffusion terms
in Equation (12) need to be linearized with respect to F and G, which are our major unknowns.
For example, using the definitions of f = �u and g= �v and their substitutions in Equation (3),
�xx term can be linearized to

�xx = 2�

3�̄

[(
2
� f

�x
− 2ū

��̄

�x

)
−

(
�g
�y

− v̄
��̄

�y

)]
(14)

As it is seen, �xx term is initially linearized to � f/�x and �g/�y gradient terms. We use the
approximation given in Equation (13) to replace the terms in Equation (14). It eventually yields

�xx ≈ 2�

3�̄

[
3∑
j=1

(
2
�N j

�x
Fj − �N j

�y
G j

)
−

3∑
j=1

(
2ū

�N j

�x
− v̄

�N j

�y

)
¯̃� j

]
(15)

where �̃ is the magnitude of density at the vertices of each element. The other stress term �yx can
be treated in a similar manner. The substitutions of �xx and �yx in Equation (12) and a suitable
combination of similar coefficients eventually yield

[A f f d ]{F} + [A f gd ]{G} + [a f f c]{ f } + [a f pp]{p} = {A f d} (16)

The variables in the brackets represent 3× 3 matrices. Very similar to Equation (8), Equation (16)
presents three x momentum conservations for the three SCVs located in an element. For example,
the coefficients in the first row of the matrices represent a part of the x-momentum conservation
on the cell faces of SCV1. Contrary to the matrices in Equation (8), the matrices in Equation (16)
are multiplied by both the unknowns at the integration points (i.e. f and p) and the unknowns at
the main grid points (i.e. F and G). To emphasize this, the matrices which are multiplied by the
magnitudes at the element vertices are shown by the uppercase letter of A and at the integration
points by the lowercase letter of a. Considering this point, {F} indicates the three unknowns at
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the element vertices while { f } denotes the three momentum component variables at the mid-cell
faces in one element. The elements of matrices in Equation (16) are given by

A f f d
i j =−

2∑
k=1

[
4�

3�̄

�N j

�x
(�Sx ) + �

�̄

�N j

�y
(�Sy)

]
Ski

+ ��i
�t

(17)

A f gd
i j =−

2∑
k=1

[
−2�

3�̄

�N j

�y
(�Sx ) + �

�̄

�N j

�x
(�Sy)

]
Ski

(18)

a f f c
i j =

⎧⎪⎪⎨
⎪⎪⎩

[ū(�Sx ) + v̄(�Sx )]S1i if j = S1i

[ū(�Sx ) + v̄(�Sx )]S2i if j = S2i

0 else

(19)

a f pp
i j = a p f m

i j (20)

The right-hand-side vector in Equation (16) is given by

A f d
i =

3∑
j=1

2∑
k=1

(
−4�

3�̄
ū

�N j

�x
¯̃� j + 2�

3�̄
v̄
�N j

�y
¯̃� j − �

�̄
ū

�N j

�y
¯̃� j − �

�̄
v̄
�N j

�x
¯̃� j

)
Ski

+ ��i
�t

Fo (21)

If we repeat the procedure provided for treating the x-momentum similarly for the y-momentum
equation, three y-momentum conservations are obtained for the three SCVs within each element.
Similar to Equation (16), it eventually yields

[Ag f d ]{F} + [Aggd ]{G} + [aggc]{g} + [agpp]{p} = {Agd} (22)

The matrix coefficients in this equation can be easily obtained using the strategy described for the
x-momentum equation.

At this stage, we have used an assembly of finite-volume and finite-element methods to integrate
the Navier–Stokes equations over the three cell faces in an arbitrary element. The next stage is to
remove the ambiguity behind the unacceptable presence of the integration point unknowns in our
conservative statements, i.e. Equations (8), (16), and (22).

5. INTEGRATION POINT EXPRESSIONS

Since { f }, {g}, and {p} vectors appeared in Equations (8), (16), and (22) represent unknown
magnitudes at the integration points, we need to develop suitable relations between integration
and nodal points in order to construct a well-posed set of linear algebraic equations. Among the
convection, diffusion, and pressure terms, the convection terms are the most complex. This is why
we mostly focus on modelling the convection terms in this section. Since, the convection role is to
transport a property in the solution domain, upwind-based schemes are recommended to model it.
However, upwind-biased schemes are prone to produce false diffusion. Considering the essence of
streamwise upwinding [17, 18, 42], a suitable magnitude for the unknown � at an integration point
can be suggested as �i p =�up+��i p, where ��i p represents the variation of �i p in the streamwise
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direction. To provide an inclusive approximation for ��i p, the steady momentum equations are
written in the streamwise direction. They yield

Vtot
� f

�s
− �∇2u + �p

�x
= Sxdiff (23)

Vtot
�g
�s

− �∇2v + �p
�y

= Sydiff (24)

where Vtot = (ū2 + v̄2)1/2 and s represents the streamwise direction. The magnitudes of ū and v̄

are approximated from the known magnitudes of the preceding iteration using their definitions,
ū = f̄ /� and v̄ = ḡ/�. The rest of terms in the two momentum equations are treated as source
terms and taken to their right-hand sides.

Equations (23)–(24) are used to approximate f and g. Considering element QTB in Figure 1
and the direction of V at the mid cell face, the streamline intersects the edge BT at ‘up’ point.
Hence, an upwind magnitude for �i p becomes �up. The distance between the integration point and
its upwind point is called upwind length and is denoted by Lup. Considering this definition, � f/�s
in Equation (23) can be discretized along the streamwise direction using a backward differencing
scheme. It yields (

Vtot
� f

�s

)
i pi

≈
(
Vtot

f − fup
Lup

)
i pi

(25)

where i pi denotes the i th integration point within an element. Considering edge BT of element
QBT in Figure 1, fup can be calculated from

( fup)i pi =
[a
b
Fupr +

(
1 − a

b

)
Fupl

]
i pi

(26)

where the subscripts upr and upl denote the magnitude of F at the right and left nodes to the
upwind point. For the pressure term given in Equation (23), we use the approximation given
in Equation (13). For the diffusion term, we use (∇2u)i pi =[(∑3

j=1N jU j − uip)/Ldiff]i pi where
Ldiff denotes a characteristic diffusion length [20]. Since∇2u is nonlinear with respect to our chosen
dependent variables, we linearize it to∇2u = (∇2 f )/�−(u∇2�)/�, which becomes∇2u = (∇2 f )/�
in incompressible limit.

If these two recent approximations and those given in Equations (25)–(26) are substituted in
Equation (23), we can derive an expression for fi p in terms of F and P magnitudes at the vertices
of the element, which includes fi p. After a suitable rearrangement of the derived statement, we
obtain

{ f } = [C f f ]{F} + [C f p]{P} + {C f } (27)

Starting from Equation (24), a similar procedure can be repeated to approximate g at an arbitrary
integration point. A suitable treatment of this equation can provide an inclusive expression for g,
which is finally given by

{g} = [Cgg]{G} + [Cgp]{P} + {Cg} (28)

where C∗∗ and C∗ represent 3× 3 and 3× 1 matrices and arrays, respectively. The superscripts
have definitions very similar to those in Equation (8). Since the role of pressure variable appears in
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our cell-face expressions, we call them pressure-weighted upwinding. Darbandi and Schneider [56]
have further extended Equations (27)–(28) to include the role of temperature field in the cell-face
expression to treat buoyant flows on structured quadrilateral grids. This is out of concern in the
current work.

If the cell-face expressions given by Equations (27)–(28) are substituted into the conservative
statements for the continuity, i.e. Equation (8), and momentum equations, i.e. Equations (16) and
(22), and we use a bilinear interpolation to approximate the pressure at integration point in those
statements, the statements become only in terms of unknowns at the cell centres, hence, the set of
linear algebraic equations becomes well posed. However, at this stage, we are faced with a funda-
mental difficulty in numerical treatment of the Navier–Stokes equations in incompressible limit.
As was mentioned in the Introduction section, a stable finite-element discretization of the velocity–
pressure formulation of incompressible Navier–Stokes equations requires different representation
of velocity and pressure fields. In particular, C0-interpolation generates parasitic pressures. These
elements do not satisfy the inf–sup condition of Babuska and Brezzi, as discussed in [57, 58]. To
treat this, various mixed finite-element approximations have been developed [59]. For example,
using a velocity decomposition least-squares method, Fernandez and Hafez [60] provide a stable
solution of 2D incompressible flows on linear triangular elements.

Similarly, the use of same velocity expressions in both the derived continuity and momentum
equations can result in a checkerboard problem [61, 62]. As was described in the Introduction
section, one primitive strategy to overcome this difficulty has been to treat the governing equations
on a staggered grid. To treat the equations on a collocated grid, Rhie and Chow [38] suggested
the use of two types of velocity components at the cell faces to overcome the problem. In this
regard, the velocity components in the Navier–Stokes equations are categorized into convected
and convecting types, in order to provide the required coupling between the velocity and pressure
fields [38, 39, 43, 44, 50, 62]. All the velocities in the continuity equation are convected type, but
the velocities in the momentum equations can be regarded as both types. Similar to Rhie and Chow
and the rest of researchers in this field, we also need to derive additional f and g expressions,
instead of u and v expressions, at the cell faces of our collocated grid because our major dependent
variables are the momentum components instead of the velocity ones. In our past research, we
developed expressions to treat flow on the structured quadrilateral grids [20, 47]. In the present
work, we benefit from the general convecting expression suggested in 1D form by Reference [62]
to derive our 2D convecting components. The additional f and g expressions are derived from the
proper assemblage of the continuity and momentum equations. The new statements are defined as(

u
� f

�x
+ v

� f

�y
− �∇2u + �p

�x

)
− u

(
� f

�x
+ �g

�y

)
= the rest of terms (29)

(
u

�g
�x

+ v
�g
�y

− �∇2v + �p
�y

)
− v

(
� f

�x
+ �g

�y

)
= the rest of terms (30)

Here is a strong physical interpretation behind the above equations. Since the second momentum
components are needed to be substituted in the continuity equation, we somehow need to include
the role of continuity equation in approximating �u and �v fluxes at the cell faces. However, back
to the origins of f and g expressions, i.e. Equations (23)–(24), there is no direct influence of the
continuity equation in deriving the first set of cell-face expressions, i.e. Equations (27)–(28). In fact,
they were derived solely from the pure momentum balances. However, Equations (29)–(30) enforce
direct influence of the mass balance in deriving a second set of cell-face momentum expressions,
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which are going to be substituted in the continuity equation, i.e. Equation (8). Therefore, if there
is no spurious or non-physical solution in the computational domain, the continuity equation error
given in the second set of parenthesis in Equations (29)–(30) vanishes and Equations (29)–(30)
reduce to Equations (23)–(24). In another words, the current formulation is smart and uses the
second momentum components wherever and whenever there is a demand.

The discretization of Equations (29)–(30) is very similar to the momentum equations given in
Equations (23)–(24). There are additional gradient terms in Equations (29)–(30), which are treated
using the tactic introduced in Equation (13). Since we have both � f/�x and �g/�y gradient terms
in both Equation (29) and Equation (30), the roles of both F and G unknown variables will appear
in the new cell-face expressions for f and g. After some mathematical efforts, two new statements
for the cell-face velocities are obtained. They are shown by f̂ and ĝ and given by

{ f̂ } = [C f̂ f ]{F} + [C f̂ g]{G} + [C f̂ p]{P} + {C f̂ } (31)

{ĝ} = [Cĝ f ]{F} + [Cĝg]{G} + [Cĝp]{P} + {Cĝ} (32)

To distinguish the new { f̂ } and {ĝ} from those in Equations (27)–(28), they are identified by a
hat. Similar to Equations (27)–(28), these expressions are also pressure oriented, hence, they are
pressure weighted as before. The new statements are substituted in { f } and {g} in Equation (8).
This substitution ends the numerical treatment of the conservative governing equations. The next
step is to assemble the constructed element stiffness matrices into the global matrix. However,
implementing implicit solvers on unstructured grid arrangements is very tedious. In the next section,
we explain the data structure used in the current unstructured grid approach. Before closing this
section, it is necessary to describe a few points about the current method.

Considering the descriptions given on discretizing Equations (23)–(24) and Equations (29)–(30),
it is clear that the current cell-face expressions are first order in velocity field calculation and second
order in pressure field calculation. It is because the velocity field is upwinded while the pressure
field is treated using a bilinear interpolation. However, the current cell-face approximation will be
second order in both the velocity and pressure fields if the role of convection term in Equations
(23)–(24), (29)–(30) becomes negligible. This condition will arise if the flow Reynolds number is
sufficiently low.

Although the current formulations can be equally applied to solve either compressible or incom-
pressible flows, our main concern in this study has been incompressible and lowMach compressible
flows. As it is known, the shock capturing techniques cannot be readily extended to solve low Mach
compressible and incompressible flows. We show that the current method performs no limit in
treating such flows. Indeed, our experience has shown that a similar formulation has been capable
of solving high-speed flow on structured quadrilateral grids. Despite using any types of limiter
and/or damping functions, our results showed that the current formulation would exhibit nei-
ther undershoots and overshoots around the steep gradients nor oscillations around discontinuities
[47, 52–55]. Such exhibition is normal because the derived cell-face expressions are categorized
as first order. However, in spite of using first-order expressions, the investigation performed in
the above references indicates that their similar first-order formulations slightly dissipates the
solution around discontinuities. This can be counted as a major promotion to develop the current
formulation on unstructured grid employment.
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6. THE DATA STRUCTURE

For an unstructured grid approach, the design of a data structure is very important. Contrary to
the work of Barth [6] and many other workers who employ an edge data structure, we consider
an element-based data structure. Back to Section 3, using this structure, each node in the grid is
numbered and the grid is defined by the elements and the three nodes located on the vertices of
each element. We have used a loop over all elements. Therefore, the element-based data storage
is used here because it is natural to the element-centred storage scheme. With element-based data,
connectivity integer arrays need to be created to address mesh relations from one element to its
neighbouring elements.

As was described before, the current code is basically a finite-volume-based finite-element
method and consequently, an unstructured element arrangement makes the global stiffness matrix
significantly sparse. The data structure required by the current sparse matrix solver includes the
total number of nodes and elements and their numberings, the total number of boundary elements
and nodes and their numberings, and a connectivity array. As was mentioned earlier, a connectivity
array must be generated for an unstructured grid so that a cell neighbourhood is completely defined
for the solver. Indeed, the connectivity arrays determine the non-zero elements in the global stiffness
matrix. However, to find the number of non-zero elements and their row and column numbers inside
the global stiffness matrix, the solver initially searches the grid to find the neighbouring nodes
around each individual node. Eventually, three arrays whose dimensions are equal to the number
of non-zero elements are constructed. They provide the row number, the column number, and the
magnitude of the non-zero element in the global stiffness matrix. Providing this information, the
connectivity array can be readily constructed.

The linear algebraic solver used in this research is a sparse matrix solver. It solves the set
of algebraic equations using suitable assembly of direct and iterative methods. At first, it uses
an LU factorization of the coefficient matrix. Secondly, the solution of linear system is found
using an algorithm based on the Markowitz strategy, which utilizes pivoting to reduce fill-in while
maintaining numerical stability. It can finally compute the solution of the linear algebraic equations
using forward and backward substitutions [63]. Alternatively, Darbandi et al. [64] have used
different combinations of KSP methods and preconditioners to solve the set of equations resulted
from treating the incompressible flow on the structured quadrilateral grids. Their conclusion is
that the GMRES can be considered as the most efficient and successful method, specifically, if it
is combined with ILU preconditioner or other preconditioners, which use ILU in different blocks,
such as block Jacobi or additive Schwarz. In another work, Darbandi and Banaeizadeh [65] solved
the resulting sparse matrices in two ways either fully coupled or semi-coupled to improve the
efficiency of solving the system of equations that resulted from the structured quadrilateral grids.
The performance of the solvers was then investigated on a distributed computing environment.
The study showed that a fully coupled algorithm would still perform higher capabilities on parallel
machines in comparison with the segregated algorithm. In another words, although the solution
time required for each iteration reduces by a factor of 6 from a fully coupled algorithm to a semi-
coupled one, the need for implementing a relaxation parameter in the semi-coupled algorithm
increases its total run-time.

There might be a concern whether the extension and implementation of the current 2D work to
3D applications would be very complex and time consuming. In fact, the complexity in formulation
will be doubled from 2D to 3D. However, the implementation is very straightforward and it can
be easily fulfilled. The most complex part can be the physical upwinding procedure, which should
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be simplified using 3D finite-element shape functions. On the other hand, the time-consuming
issue can be regarded as a negative point in using the current fully implicit approach. As it was
mentioned earlier, the most tedious part of the current calculations returns to the solution of the
generated global sparse matrix. In 3D applications, the size of matrix and its sparseness increase
very rapidly. As is known, the solution of large size matrices even in sparse form is rather a
very time-consuming task. For this reason, the current workers have already started a few other
ways to overcome this shortcoming. A few of these remedies can be counted as using parallel
processing algorithm and parallel computations [65, 66], breaking the computational domain into
a suitable assembly of sub-domains or blocks [49], switching from a fully coupled algorithm to a
semi-coupled one [65], investigating Krylov subspace methods as a more efficient matrix solver
[64], and so on. The undertaken research is very promising and an efficient 3D extension of the
current work will be achieved in the near future.

7. THE RESULTS AND DISCUSSION

The current method is tested on unstructured grid using different standard and benchmark test
cases. The first test case is the Taylor problem to study the temporal and spatial accuracy of
the present formulations. This problem corresponds to periodic, counter-rotating vortices whose
strength decay in time at a rate determined by the viscosity. The Taylor problem has the analytical
solution to the Navier–Stokes equations. The solution is given by [33, 46]

u(x, y, t) = sin(�x) cos(�y) exp(−2�2t/Re) (33)

v(x, y, t) =− cos(�x) sin(�y) exp(−2�2t/Re) (34)

p(x, y, t) = 0.25(cos(2�x) + cos(2�y)) exp(−4�2t/Re) (35)

on a square (0, 0)�(x, y)�(1, 1) computational domain. The problem is solved by imposing the
above time-dependent values of the velocity at the boundary of the domain and introducing its value
at t = 0 as the initial condition in the domain. The solution should remain unchanged over time in the
absence of viscosity. The Reynolds number is defined as Re= uD/� where D = 1.0 is the domain
length scale. The computations were performed for different low and high Reynolds numbers
using uniform unstructured meshes. The grid was progressively refined from 8× 8 to 32× 32 in
factors of 2 to verify the overall spatial discretization. As it is known, the flow at lower Reynolds
guarantees a fully diffusive behaviour. Therefore, the current formulations approach a second-order
accurate scheme in low Re. However, the flow at higher Reynolds exhibits a convective-dominated
behaviour, hence, the current method reduces to a first-order scheme. Figure 2(a) illustrates the
kinetic energy error in terms of the grid resolution. As it is observed, the slopes of the two lines
are different for the two low and high Reynolds. It indicates that the spatial accuracy of the
current method reduces from lower Reynolds to higher one. Figure 2(b) demonstrates the error
versus time step. As was mentioned before, the current method would be first-order accurate in
time. Following our description provided in Sections 4 and 5, it is worth to reemphasize that the
accuracy of the present numerical solutions is excellent in spite of using a first-order method to
treat high Reynolds flows even on coarse grid distributions. It is because the use of four inclusive
cell-face expressions, see Equations (27)–(28) and (31)–(32), provides a strong coupling between
the pressure and velocity fields and minimizes the false diffusion in the domain. This advantage
is shown shortly.
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Figure 2. The Taylor problem study and the demonstration of convergence rate versus (a) mesh size and
(b) time step and the temporal kinetic energy decay at (c) Re = 1 and (d) Re = 1000.

As was mentioned in the Introduction section, the classical collocated arrangements using the
traditional convection schemes may not conserve the global kinetic energy [30–33]. Since the
non-staggered schemes may not conserve energy in the discrete sense even for the second-order
accurate methods [32], we have chosen the convection of a decaying vortex to check if the energy
in the current method is suitably conserved even in inviscid limit. We continue our study on
the decaying vortex and consider the two Re= 1 and Re = 1000 as a fully viscous flow and
an approximate inviscid flow limits, respectively. Figures 2(c) and (d) show the decay in kinetic
energy as a function of time. Figure 2(c) shows that the kinetic energy is fully conserved even
on very coarse grid resolutions. It is because the flow at such low Re plays a fully second-order
behaviour. Figure 2(d) shows that the kinetic energy is not conserved suitably on coarse grids at
Re= 1000. As it is seen in this figure, the conservation of kinetic energy on a grid resolution
with 32× 32 and beyond is guaranteed. Indeed, comparing them with the work of Reference [32],
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the current global kinetic energy conservation is excellent. Once more, this achievement can be
attributed to the advantages of developing inclusive statements at the cell faces of our unstructured
volumes.

The second test case is the driven polar cavity taken from Fuchs and Tillmark [67]. The cavity
configuration is shown in Figure 3. The cavity is a portion of an annulus with the inner and
outer radii of r = 1 and 2, respectively. The annulus is limited to a circular arc with −1/2�	� +
1/2 radians. If Ur and U	 indicate the radial and angular velocity components in a cylindrical
coordinate system, all the cavity walls except the bottom one have no-slip boundary conditions,
i.e. Ur =U	 = 0. However, the velocity components at the bottom wall are Ur = 0 and U	 = 1.
Furthermore, to complete the boundary condition implementation, one cell in the domain or its
boundaries is chosen to fix the pressure field. The investigation is performed at Re= 350. Figure
3(c) shows the isobars in the polar cavity. The pressure contours are depicted here to pinpoint that
the current collocated method does not yield non-physical pressure pattern in the computational
domain.

Figures 3(d) and (e) show the current radial and angular velocity profiles along the lines with
	 =−20 and 0◦. The figures demonstrate the grid-dependent study. In another words, they present
the results for three different grid resolutions considering an overall size increase by a factor
4 from one grid to the next fine grid. The coarsest grid with 194 nodes and its next fine grid
with 728 nodes are shown in Figures 3(a) and (b), respectively. Figures 3(c) and (d) indicate
that the semi-coarse grid shown in Figure 3(b) provides solution with sufficient accuracy. Figure
4 compares the accuracy of the current solution with the experimental data and calculations
presented by Fuchs and Tillmark [67] and the calculations presented by Jeng and Chen [34].
Although the current solutions vary slightly from the experimental data, they coincide very closely
with the reference’s calculations. Similarly, the results of Reference [34] agree well with the current
numerical solutions but not with the experimental data provided by Reference [67].

The third test case is the flow in a squeezed cavity. This geometry is obtained by skewing the
unit square cavity to the one with an inclination angle of 
 = 45◦. For the boundary condition
implementation, zero velocity components are defined at all four walls except the upper lid. The
tangential velocity on the upper lid is unity. Additionally, the tangential velocities at the upper
corners are also unity; however, no inflow and outflow of mass is allowed between these two nodes
and their next neighbouring nodes on the inclined walls. To fix the pressure field, the magnitude of
pressure is set zero at the right lower corner. Following Demirdzic et al. [68], the study is fulfilled
at two Reynolds numbers of 100 and 1000 using two uniform and non-uniform grids. The numbers
of boundary nodes are 61× 61 for both grids. Figure 5 shows the unstructured grid arrangements
for both uniform (top) and non-uniform (bottom) distributions. There are a total of 1994 nodes for
the uniform grid and a total of 1813 nodes for the non-uniform grid in their solution domains. The
horizontal and vertical velocities are shown in Figures 6(a) and (b) for two Reynolds numbers of
100 and 1000, respectively. The current results are compared with those reported in Reference [68].
Following the reference, the y coordinate for u velocity and the x coordinate for v velocity have
been normalized along the centrelines. There is not much difference between the results of two
types of grid distributions. The slight differences between the uniform and non-uniform results
are due to using almost equal number of nodes in these two grid distributions. If the total number
of nodes is not large enough, the local errors on the non-uniform grid become larger than that
on the uniform grid. Despite considering this point, the figure shows that the numerical results
for both grid arrangements are in excellent agreement and they agree well with the benchmark
solutions.
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Figure 3. The mesh distributions in polar cavity with (a) 194 nodes and (b) 728 nodes; and
the demonstration of (c) pressure contours; and the mesh refinement study for the velocity

profiles along (d) 	 = −20◦ and (e) 	 = 0◦ radii.

The fourth test case is the flow over a backward-facing step. Based on the flow Reynolds
number, several recirculations may appear in the flow field. Armaly et al. [69] have presented
detailed measurement of velocity distribution and reattachment length for the incompressible flow
of air in a 2D channel. The measurement is provided for a wide range of Reynolds numbers from
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Figure 4. The velocity profiles along: (a) 	 =−20 and (b) 0◦ radii and comparison with the results
provided by Fuchs and Tillmark [67] and Jeng and Chen [34].
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Figure 5. The mesh distributions in the skewed cavity using (a) uniform unstructured grid and
(b) non-uniform unstructured grid.
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Figure 7. Unstructured grid distribution in the backward-facing step
problem: (a) close to step and (b) close to outflow.

70 to 8000. The results show that the various flow regimes are characterized by typical variation
of separation length with Reynolds number. We select Re= 389 to launch our study because this
special Reynolds number has been widely chosen to validate newly developed computational fluid
dynamics formulations. The experimental data suggest that the flow with Re>400 generates 3D
variation or turbulence in the flow field. The Reynolds number is calculated using twice the height
of the inlet channel and two-thirds of the maximum inflow velocity at the step. The numerical
computations are performed on both uniform and non-uniform unstructured grid distributions of
which the latter one is described here. The grid distribution is observed in Figure 7. The total
number of nodes is 1897. Grid is clustered close to the inlet in order to resolve the various viscous
gradients and the reattachment point of the separated flow. The choice of non-uniform grid is quite
normal in treating the backward-facing step problem [26, 70–72]. It is because the flow is almost
fully developed in a major part of the duct downstream of the step. That part does not need fine grid
considerations. Following Reference [69], we choose a length-to-height ratio of 13. Darbandi and
Vakilipour [72] have extensively investigated the influence of boundary conditions on the accuracy
of the numerical calculations. They show that the current formulation can be readily used to solve
the same flow field in channels with much shorter lengths without causing adverse effect on the
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Figure 8. Axial velocity profiles at four longitudinal locations in the backward-facing step problem and
comparison with numerical solution of Rida et al. [26] and experimental data of Armaly et al. [69].

accuracy of the calculations. As before, no slip boundary conditions are used on the walls of the
channel and the step itself. A fully developed flow is specified at the inlet. The pressure is fixed
at one point but not necessarily at the exit [72].

Figure 8 presents the obtained velocity profiles at four axial locations of x/s = 2.55, 4.18, 7.76,
and 13.57. The current results are compared with the numerical solution of Rida et al. [26] and
the experimental data of Reference [69]. Generally speaking, the current results perform better
agreement with the experimental data. The unstructured grid of Reference [26] contains 2240
elements. Similar to our grid distribution, their grid is fine close to the inlet and stretched near
the outlet. The reference reports a total runtime of 1197 s if the computations are carried out on
an IBM RISC 6000 model 340. The reference does not exactly report the chosen convergence
criterion magnitude. The total runtimes of the current executions are 818, 1057, 1348, and 1659 s
considering different convergence criteria of 1.3× 10−4, 1.1× 10−5, 1.0× 10−6, and 1.1× 10−7,
respectively.

The next test case is a four-port valve, which can be found in application like fluid network.
This test was numerically simulated by Jorgenson and Pletcher [23]. It is a complex geometry to
show the versatility of applying boundary conditions when using an unstructured grid flow solver.
Following Reference [23], we also solve the problem using compressible formulation. The flow
Mach number is 0.05. Figure 9 shows a 2D valve with four ports. Fluid enters through a channel
on the left and exits through the bottom channel. A fully developed velocity profile is specified
at the inlet. The pressure is specified at the exit. No-slip boundary conditions are applied at all
solid walls. Following Reference [23], the problem is tested at two Reynolds of 10 and 50 using
compressible formulation. The Reynolds is calculated based on the height of inflow port section
and the mean velocity profile at the inlet.

Figure 9(b) depicts the density contours in the domain at Re= 50. The density is obtained via the
equation of state for the air as a perfect gas. At this low Mach number, the density contours mimic
isobars. Hence, very similar to isobars given in the polar cavity, see Figure 3(c), no non-physical
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(a)

(c) (d)

(b)

Figure 9. The analysis of flow in a four-port valve: (a) the grid; (b) density contours at Re = 50;
(c) streamlines at Re = 10; and (d) streamlines at Re = 50.

oscillatory pattern is observed in four-port valve domain. Figures 9(c) and (d) show the streamlines
in the valve at Re= 10 and 50, respectively. Schematically, they are in excellent agreement with
Reference [23]. As it is seen, the closed valves act as driven cavities. A clockwise rotation of the
flow is observed in the central region in Re= 10. However, the banded fluid drives a large volume
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Table I. The (x, y) locations of the vorticity centres in the four-port valve at two Reynolds and comparison
with locations taken from Reference [23].

Reynolds Top cavity Central region Right cavity

Present work 10 (−0.04, 2.38) NA (2.75,−0.03)
Reference [23] 10 (0.00, 2.45) NA (2.80, 0.00)
Present work 50 (0.00, 3.05) (0.52, 0.42) (3.15,−0.02)
Reference [23] 50 (−0.10, 3.00) (0.60, 0.35) (3.25,−0.10)

of fluid in a counterclockwise direction in Re= 50. In both cases, the flow redevelops into a fully
developed parabolic profiles at the exit.

Although Jorgenson and Pletcher [23] do not quantify their results, there is an opportunity to
present an approximate comparison of our predicted vorticity centres with theirs. Table I presents
the coordinates of two vorticity centres in the closed ports and one inside the circular region. The
current results agree well with those of the reference. It should be noted that the reference does not
report the data. We have extracted them from their velocity–vector plots. Therefore, the achieved
accuracy is as much as the accuracy presented in their vector plots.

The last test case is the unsteady incompressible flow over a circular cylinder to induce vortex
shedding in the wake of high Reynolds flows. The computational domain is confined to bound-
aries sufficiently far from the cylinder to preclude the undesirable effects of improper boundary
locations in the accuracy of our solution. The circular cylinder is of unit diameter with its cen-
ter located at the origin of the Cartesian coordinates. The dimensions of the far-field region is
[−12.5, 30] × [−12.5, 12.5], see Figure 10(top). The figure shows two far and close views of
the generated mesh in the entire domain and in the vicinity of the cylinder, respectively. The
computational domain is divided into 4540 unstructured triangular elements using 2332 nodes,
which are suitably clustered near the cylinder and its wake. The surface of the cylinder is divided
into 42 equal parts. The Dirichlet far-field boundary conditions are applied to the left, bottom,
and top outer boundaries considering the free-stream boundary conditions with u = u∞ = 1 and
v = v∞ = 0. The right boundary is suitably closed using the advantages of a fully conservative
method [72]. The no-slip boundary conditions u = v = 0 are implemented at the cylinder surface.
Following Williamson [73], the computations were performed at Re= 100. Figure 10 presents the
streamlines and vorticity contours at a specific time and the vorticity fluctuations at a specific
point in the solution domain. In the latter plot, the vorticity magnitude is plotted against time. The
periodic behaviour of the flow is fully observed in Figure 10(bottom). Using a normalized time step
of 0.1, the shedding period is found to be T = 6.4 units, which results in a dimensionless shedding
frequency of St = 0.1562. Comparing with the experimental measurements of Williamson [73],
whose Strouhal number is 0.1643, and the numerical solution of Braza et al. [74], whose Strouhal
number is 0.16, our shedding frequency shows 4.9 and 2.38% differences with them, respectively.
Braza et al. employ an alternating-direction-implicit method with a normalized time step of 0.02
in their second-order-accurate finite-volume approach. Considering the use of a first-order accurate
formulation in time and a large time step of 0.1, the present accuracy is excellent.

The current computations were carried out on a Pentium III, 550MHz personal computer. The
current experience showed that the current results would not much change if the convergence
criterion became less than 10−5.
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Figure 10. The study of unsteady flow over a cylinder placed in a free stream including
mesh, streamlines, vorticity contours, and vorticity fluctuation at an arbitrary node in

the domain from top to bottom, respectively, Re= 100.
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8. CONCLUSION

We extended a pressure-weighted upwinding scheme on collocated unstructured grids benefiting
from a hybrid finite-volume element formulation. To consider more physics of flow in our pressure-
based formulations, suitable weights of both convection and diffusion physics as well as the pressure
influence were incorporated directly in estimating the cell-interface advection. To suppress the non-
physical pressure pattern in our solutions, the dual-velocity definition concept was employed and
two pairs of momentum component expressions were derived at all cell interfaces. It was shown that
the developed formulations would be smart enough to use the second pair of expressions wherever
and whenever it deems to be a demand. The comparison of the current solutions with those
of benchmark and standard test cases as well as the experimental data showed that the achieved
accuracy would be excellent despite using first-order accurate spatial and temporal formulations on
very coarse grid resolutions. This can be attributed to the developed pressure-weighted upwinding
scheme, which incorporates more effective roles of different terms of the fluid flow governing
equations in the cell-interface approximations. The development of the method to unstructured
grids has numerously improved the capabilities of the primitive method for solving either the flow
in complex geometries or complicated flow fields in simple geometries. The developed formulations
and the extended algorithm can be equally utilized to simulate complex incompressible and low-
Mach compressible flow fields encountered in engineering applications.
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